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(a) Ghost-on-the-Shell: A general 3D representation

Shell: a closed surface Ghost: open surface
defined on the Shell

(b) Application I: Reconstruction from multi-view images

(c) Application II: Unconditional mesh generation

Shell: a watertight surface

Figure 1: Left: Illustration of mesh extraction with G-SHELL through a manifold signed distance on a surface;
Right: Applications of G-SHELL, multiview mesh reconstruction (top) and mesh generation (bottom).

ABSTRACT

The creation of photorealistic virtual worlds requires the accurate modeling of 3D
surface geometry for a wide range of objects. For this, meshes are appealing since
they 1) enable fast physics-based rendering with realistic material and lighting,
2) support physical simulation, and 3) are memory-efficient for modern graphics
pipelines. Recent work on reconstructing and statistically modeling 3D shape,
however, has critiqued meshes as being topologically inflexible. To capture a wide
range of object shapes, any 3D representation must be able to model solid, water-
tight, shapes as well as thin, open, surfaces. Recent work has focused on the former,
and methods for reconstructing open surfaces do not support fast reconstruction
with material and lighting or unconditional generative modelling. Inspired by
the observation that open surfaces can be seen as islands floating on watertight
surfaces, we parameterize open surfaces by defining a manifold signed distance
field on watertight templates. With this parameterization, we further develop a
grid-based and differentiable representation that parameterizes both watertight
and non-watertight meshes of arbitrary topology. Our new representation, called
Ghost-on-the-Shell (G-SHELL), enables two important applications: differentiable
rasterization-based reconstruction from multiview images and generative modelling
of non-watertight meshes. We empirically demonstrate that G-SHELL achieves
state-of-the-art performance on non-watertight mesh reconstruction and generation
tasks, while also performing effectively for watertight meshes.

1 INTRODUCTION

The creation of high-fidelity 3D virtual worlds requires a representation of 3D shape that can be
rendered and simulated efficiently and realistically. Most commonly, 3D shapes are represented as
meshes for which modern graphics pipelines are highly optimized. Because the manual creation of
3D mesh assets is time-consuming, research has focused on the automatic creation from images or
generative models. While much of the recent work has focused on watertight meshes [55, 56, 60, 67],
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many 3D objects, such as clothing, paper or leaves, are non-watertight, open1 and thin. The capture
and generative modeling of such surfaces is relatively underexplored.

Existing modeling methods for non-watertight meshes typically build an unsigned distance field
(UDF) [35, 38], a scalar field of the absolute distances of 3D coordinates to the nearest surface. With
UDF, one may obtain non-watertight meshes by extracting and discretizing the zero UDF levelset.
However, isosurface extraction from a UDF, compared to that of signed distance fields (SDF), is a
non-trivial task: the bisection search strategy in classical algorithms such as Marching Cubes [39]
does not simply apply to UDFs. Common workarounds include 1) post-processing double-layered
watertight mesh [48, 70], introducing local pseudo-signs for bisection search [15], and using implicit-
free point-to-mesh reconstruction methods [10]. These methods inevitably introduce modeling errors,
posing a challenge for non-watertight mesh reconstruction and generation.

We take a different approach to modeling non-watertight meshes with the following key observation –
most open surfaces can be viewed as entities floating on watertight surfaces, analogous to continents
floating on the Earth’s surface. In other words, it suffices to model the open surface boundary on
some watertight surface template. To formalize this idea, we define a manifold signed distance field
(mSDF) on the watertight template, in which the sign indicates whether a point lies in the open
surface or not, and the absolute scale indicates the geodesic distance to the boundary. An open surface
can now be extracted via isoline extraction with mSDF.

We follow this intuition and design a general representation, Ghost-on-the-Shell (dubbed G-SHELL),
which jointly parameterizes the watertight template and the non-watertight mesh living on it. Specifi-
cally, we discretize the 3D space into a grid of cells, of which the vertices store both SDF and mSDF
values, and then apply Marching-Cubes-like extraction to obtain the SDF isosurface and the mSDF
isoline. Our implementation exploits an efficient mesh extraction algorithm instead of following
the naïve two-stage approach of “isosurface to isoline”. In a nutshell, we adapt the look-up table in
Marching-Cubes-like algorithms, which enumerate all possible configurations of isosurfaces in each
cell according to both SDF and mSDF signs. Such an implementation effectively reduces the number
of mesh faces created and thus the computational cost of the grid-to-mesh mapping.

Since G-SHELL uses only simple, deterministic and parallelizable operations for mesh extraction,
mesh-based inverse rendering can now be applied to non-watertight meshes due to nicely-behaved
optimization landscapes (with simple Marching-Cubes-like extraction) and memory-friendly compu-
tation (with efficient mesh rasterizers). This efficient mesh rasterization means that we are now able
to optimize both material and lighting from pixel information by exploiting physics-based rendering
of meshes. Furthermore, the regular grid structure of G-SHELL allows the extension of recent
generative methods, such as diffusion models, to non-watertight meshes for the first time.

In summary, our major contributions are listed below:

• Mesh representation. G-SHELL is a differentiable representation that effectively parameterizes
both watertight and non-watertight meshes of different shape topologies.

• Efficiency. With the designed mesh extraction algorithm for G-SHELL, we achieve fast reconstruc-
tion of non-watertight meshes with differentiable rasterizers. Specifically, we design an efficient
mesh extraction algorithm for G-SHELL.

• Physics-based inverse rendering. G-SHELL enables joint optimization of topology, material, and
lighting of both watertight and non-watertight meshes.

• Mesh generation. The grid parameterization and efficient mesh extraction of G-SHELL enables
effective generative modeling of both watertight and non-watertight meshes with diffusion models.

• We qualitatively and quantitatively compare G-SHELL with current popular 3D representations
on reconstruction from realistic images and unconditional generation of both watertight and non-
watertight meshes, demonstrating the superiority of G-SHELL in representing general 3D shapes.

2 RELATED WORK

Mesh parameterization and extraction. In contemporary computer graphics pipelines and software,
3D meshes serve as a crucial and foundational representation. The means of mesh reconstruction can
mostly be classified into three categories: from mesh templates, from point clouds and from implicit

1i.e., bordered. Not to be confused with the mathematical term of openness.
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fields. Mesh templates enable the optimization of vertex positions to align with object surfaces but can
be inflexible for diverse topologies [16, 64]. Some methods [45, 59, 61] utilize remeshing [5, 20] to
accommodate topology changes, but careful initialization remains essential to avoid bad local minima
during optimization. Point clouds, compared to mesh templates, can be directly obtained from Lidar
scans and at the same time offer flexibility in capturing diverse shape topologies. Such flexibility
comes at the cost of the challenge in inferring point connectivity – whether two points are adjacent
to each other on the target surface. Common methods for building surfaces from point clouds, such
as Ball-Pivoting [3] and Delaunay Triangulation [28], are not only slow due to non-parallelizable
operations but susceptible to noises in source point clouds.

It is therefore more common to extract meshes from implicit fields, which may be built from point
clouds with Poisson reconstruction [24, 46, 54], or from multiview images [41, 67]. Subsequently,
meshes can be extracted by identifying and triangulating the zero levelsets with methods like Marching
Cubes [39], Marching Tetrahedra [58] and Dual Contouring [23]. Many of these algorithms are made
differentiable, such as in Deep Marching Cubes [30], Neural Dual Contouring [9], MeshSDF [49],
DMTet [55] and FlexiCubes [56]. However, most of them only apply to watertight meshes due to the
use of SDF. To handle non-watertight meshes, some papers propose differentiable methods using UDF.
For instance, MeshUDF [15] computes pseudo-signs on grid vertices – the signs of inner products
between UDF gradients on grid vertices – and reuses Marching Cubes to extract meshes from the
resulted pseudo SDFs. These methods are sensitive to input noises, due to the challenge in locating
zero levelsets from non-negative fields. While implicit representations other than UDF exist, such
as variants of generalized winding number [2, 11, 21] and DeepCurrents [44], there is no efficient
differentiable mesh parameterization for them. In comparison, our method robustly and efficiently
models non-watertight meshes by extracting zero levelsets in a Marching-Cubes-like manner.

Differentiable inverse rendering. It is popular in recent years to perform differentiable inverse
rendering through implicit representations, such as NeRF [41] and SDF [60, 67], with which one
may utilize differentiable volumetric rendering [37, 41] or surface rendering [22, 32, 67] methods.
These methods are adapted to reconstruct non-watertight surfaces with UDF (e.g., NeuralUDF [38],
NeUDF [35]) and SDF (e.g., NeAT [40]). However, rendering with implicit representations typically
requires multiple and likely expensive queries for each pixel in the rendered image. And since the
geometry and color are encoded in an implicit way, it is relatively hard to disentangle geometry, ma-
terial and lighting during inverse rendering. In contrast, explicit representations, such as point clouds
and meshes, can be efficiently rendered with rasterization [25, 33], and allow easy disentanglement
of physical properties [17, 34, 42]. Compared to the implicit-based methods for non-watertight mesh
modeling, our method takes advantage of mesh-based rasterization to enable fast joint optimization
of shapes, materials and lighting from multi-view images.

Generative modeling of geometry. 3D generation is widely studied for various representations,
including explicit representations like mesh [12, 13, 36, 43], point clouds [65, 68], voxels [62], and
implicit ones like signed distance functions (SDFs) [6, 69] and neural radiance fields (NeRF) [6, 7,
26, 53]. However, apart from few mesh-based methods, all the other ones do not directly generate
meshes with arbitrary topology. As a result, one typically has to perform additional post-processing
steps to extract meshes, which can be time-consuming and may introduce additional errors.

More recently, methods have been proposed to generate meshes using intermediate grid represen-
tations either through direct 3D modeling [12, 13, 36] or through lifting information from 2D
generative models [8, 31]. While these methods achieve success in generating watertight 3D meshes,
none of them can generate non-watertight meshes. It is also possible to directly generate meshes in
an autoregressive way: for instance, PolyGen [43] builds a transformer-based autoregressive model
to alternately produce vertices and edges. However, autoregressive models can be so flexible that
they hardly scale to complex meshes (especially those not created by designers) with a very dense set
of vertices and often produce self-intersecting meshes. Our method, instead, is capable of generating
both watertight and non-watertight meshes with fine geometric details and without self-intersections.

3 PRELIMINARIES: SDF-BASED MESH EXTRACTION

We briefly summarize Marching Cubes, a classical SDF-based mesh extraction method, and introduce
some of its variants. In a nutshell, Marching Cubes discretizes the 3D space with a 3D cubic grid
and extracts faces from each cubic cell with a simple linear assumption: the SDF value of any point
in each cell is a barycentric interpolation of those on cell corners. Specifically, given any point x in
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a cell with 8 corners (p1, p2, ..., p8), we first obtain the barycentric coordinate (c1, c2, ..., c8) such
that x =

∑
i cipi. Under the linear assumption, the extracted mesh must be polygons with their

vertices on the cubic cell edges. Therefore, it suffices to compute the mesh vertex position p′ on
each edge (pi, pj) with SDF values si < 0 < sj , respectively. The vertex position is simply a linear
interpolation between pi and pj : u = (sipj − sjpi)/(si − sj).

Figure 2: Look-up table for Marching
Tetrahedra (up to rotation symmetry).
Grid vertices with and without a red dot
possess SDF values of opposite signs.

The connectivity of these extracted mesh vertices can be ef-
ficiently inferred through a look-up table. One may instead
use tetrahedral grids, leading to the variant called Marching
Tetrahedra, for which we visualize the look-up table in Figure 2.
Since the vertices are computed through simple differentiable
operations, one may parameterize watertight meshes with a po-
tentially deformable grid of SDF values – e.g., deep marching
cubes (with some relaxation) [30] and DMTet [55].

4 G-SHELL: AN EXPRESSIVE REPRESENTATION OF GENERAL 3D SHAPES

4.1 OPEN SURFACE LIVING ON WATERTIGHT SURFACE

We start with the following simple observation on a category of open surfaces, which guides our
insight to parameterize general 3D shapes with open surfaces that live on a watertight surface.

Any smooth and simply-connected open surface can be smoothly deformed to be a subset of a sphere.

This is a direct consequence of classical topological theories on surfaces, of which more mathematical
details are given in Appendix A. Indeed, a large number of surfaces (e.g., plain T-shirts) can be
completed to a watertight surface by first contracting the holes and later deforming it into a sphere.
Inspired by this observation, we define a continuous and differentiable mapping ν : M → R on the
template sphere M to characterize if a point belongs to the open surface Mo:

ν(x) > 0, ∀x ∈ Interior(Mo)︸ ︷︷ ︸
Case 1: inside the open surface

, ν(x) = 0, ∀x ∈ ∂Mo,︸ ︷︷ ︸
Case 2: on the surface boundary

ν(x) < 0, Otherwise,︸ ︷︷ ︸
Case 3: outside the open surface

where ν can be instantiated as the signed geodesic distance to the open surface boundary living on
the watertight template. While the number of choices of ν given some M and Mo can be infinite,
without loss of generality we call the field of ν manifold signed distance field (mSDF), since it is
defined on a manifold surface and characterizes the boundary in a way that is similar to SDF.

𝑣!
𝑣! − 𝑣"

∆𝑝
𝑣"

𝑣! − 𝑣"
∆𝑝

(𝑝!, 𝑣!) (𝑝", 𝑣")

Figure 3: Illustration of non-watertight mesh extraction
from some watertight triangular mesh. p1, p2 are the po-
sitions of (watertight) mesh vertices. ∆p=∥p1−p2∥ and
ν1>0>ν2 are the corresponding mSDF values. The or-
ange triangle is extracted and the blue polygon is discarded.

The problem now effectively reduces to learn-
ing a “2D mesh” defined by the zero isoline of
ν. Just as 3D meshes on the zero isosurface
can be parameterized by 3D cubic grids in
deep marching cubes, “2D meshes” (polygo-
nal curve) can also be parameterized by a “2D
grid”, i.e., a mesh for the (deformed) sphere:
simply to learn a ν value on each of the sphere
mesh vertices from which we extract non-
watertight meshes. This process is illustrated
in Figure 3. Intuitively speaking, an open sur-
face can be viewed as the remaining essence
after cutting out the hollow vacuum on a 3D
shell, and hence we name the proposed 3D
representation Ghost-on-the-Shell2.

Such a naïve construction, however, poses modeling challenges when applied to general objects.
First, it cannot capture watertight surfaces that are not homeomorphic to spheres (e.g., donuts).
Furthermore, some naïve deformation of a surface in 3D may result in self-intersection and therefore
addressing this requires additional regularization and/or modeling techniques.

2Inspiration drawn from the manga series Ghost in the Shell

4



Published as a conference paper at ICLR 2024

Figure 4: G-SHELL look-up table (up to rotational symmetry) for tetrahedral grids. Grid vertices with and
without a red dot possess SDF values of opposite signs, and green dots on watertight mesh vertices indicates
negative mSDF values. The pink regions represent the final extracted faces while the blue ones are the discarded
regions on the watertight template mesh. Colored polygons other than triangles are cut along dashed lines.

Instead, we propose to jointly learn a general watertight mesh template, parameterized by a 3D grid
of SDF values, in order to capture a larger set of meshes3. As we are not able to define ν with
mesh topology changing over time, we instead define ν in the 3D space. Specifically, we store
the discretized values of ν in a 3D grid. The mSDF value of any point in a grid cell can therefore
be computed by a barycentric interpolation of the ν values on the grid cell vertices. We note that
G-SHELL reduces to a typical watertight surface representation if all mSDF values on the grid are
set to positive values (i.e., no valid topological hole is defined on the manifold).

4.2 EFFICIENT MESH EXTRACTION WITH G-SHELL

With SDF and mSDF values stored in the same 3D grid, we obtain for G-SHELL an efficient
Marching-Cubes-like algorithm which reuses the interpolation coefficient (rf. Eqn. 3) for the mSDF
sign computation. Specifically, with an edge (pi, pj), the corresponding SDF values si < 0 < sj
and mSDF values νi, νj , we can compute the mSDF value on the extracted mesh vertex as ν′ =
(siνj − sjνi)/(si − sj). We give an example of the look-up table for tetrahedral grids in Figure 4,
which enumerates all possible cases of SDF signs (on grid vertices) and mSDF signs (on watertight
mesh vertices). Despite using tetrahedral grids as an example, we note that G-SHELL is generally
applicable to other grid structures and not limited to tetrahedral grids.

5 APPLICATIONS OF G-SHELL

5.1 MESH RECONSTRUCTION FROM MULTIVIEW IMAGES

With G-SHELL, existing differentiable rasterization-based rendering methods (e.g., [17, 42]) can be
seamlessly applied for end-to-end reconstruction of both 3D watertight and non-watertight meshes
from multiview RGB and binary mask images. Reconstruction with rasterization not only allows the
final geometry to be explicitly optimized without pose-processing, but also saves memory and time
compared to volumetric rendering with UDFs [35, 38] - there is no need to evaluate densities on a
number of sample points per ray anymore. Moreover, with physics-based mesh rendering, one can
jointly optimize geometry, material and lighting in a single stage.

We note, however, some particular difficulties in non-watertight mesh reconstruction from images.
Unlike watertight meshes where we never get to see the inside surface, non-watertight surfaces have
two sides and one side may be more visible than the other. For example, the inside of a long dress
may not be fully observed and, when actually seen, it is also likely to be poorly illuminated. Similarly,
indirect illumination has to be considered along with realistic materials (especially highly specular
ones) and potentially complex geometry. To simplify the problem while still being able to demonstrate
the effectiveness of the G-SHELL representation, we use Nvdiffrecmc [17], an occlusion-aware
differentiable renderer that ignores indirect illumination but considers shadow rays.

3Indeed, any orientable open surface without self-intersection can be modeled thereby.
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Another technical challenge is how to identify the existence and location of topological holes with
only 2D images, particularly when only a limited number of views are available. We therefore
propose to regularize the mSDF values of the reconstructed mesh by introducing a “hole-opening”
loss (the mSDF is parameterized by a function with some parameter set θmSDF):

LmSDF-reg(θmSDF) =
∑

u:νθmSDF (u)≥0

Lhuber(νθmSDF(u))

︸ ︷︷ ︸
Encourage hole opening

+ τ ·
∑

u′:νθmSDF (u
′)=0

u′ visible from some q ∈ Q

Lhuber(νθmSDF(u
′)− ϵ)

︸ ︷︷ ︸
Regularize holes from being too large

(1)

in which Q is the set of training camera poses, τ and ϵ are some positive scalars, Lhuber is the Huber
loss function. We introduce the second regularization term to discourage topological holes from
being too large, especially during the early stage of the optimization process. We provide all the
details regarding the remaining regularization losses and other training settings in Appendix B.

5.2 G-MESHDIFFUSION: GENERATIVE MODELING OF GEOMETRY

With the regular grid structure of the G-SHELL parameterization, it is straightforward to train
generative models to produce the grid attributes (SDF, mSDF and potentially grid deformation)
to enable non-watertight mesh generation. Indeed, G-SHELL enables generative modeling with
diffusion models [19] in which a regular input structure is necessary.

To demonstrate the generative modeling of G-SHELL, we consider MeshDiffusion [36], which gen-
erates watertight meshes by sampling SDF and grid deformation in a 3D tetrahedral grid, to generate
non-watertight meshes. Although it is possible to simply introduce the additional dimension of mSDF
on the grid vertex attributes, the generated shapes can be noisy as pointed out in [36]. Specifically, the
boundary vertices of a generated non-watertight mesh are computed via an interpolation with mSDF:

u′ =
|ν1|

|ν1 − ν2|
· u2 −

|ν2|
|ν1 − ν2|

· u1, ν1 < 0 < ν2, (2)

in which (u1, u2) is an edge on the extracted watertight template and ν1, ν2 are the corresponding
mSDF values. Because νi can be any real number, a naïve diffusion loss results in unevenly weighted
prediction on u′. One could normalize ν to ±1, similar to what MeshDiffusion does for the SDF
values, but it comes at the cost of expressiveness as the grid deformation is already used to compensate
the error resulting from the normalization of SDF values.

We therefore propose a modified version of the MeshDiffusion architecture to generate continuous
mSDF values. Specifically, by setting α = |ν1|/|ν1 − ν2|, we rewrite Eqn. 2 into a linear mapping of
(u1, u2): u′ = αu2 − (1− α)u1. As a result, we may alternatively generate the linear interpolation
coefficient α, which is bounded in [0, 1]. In the case of tetrahedral grids as in DMTet, there are 12
candidate edges (ui, uj) in each single cell since ui’s always lie on tetrahedral grid edges. We simply
set the diffusion model to generate all α’s for these candidates edges in each single cell. The α’s
to be used are eventually chosen based on the configuration of each generated tetrahedral cell (as
in Figure 4). Similar to MeshDiffusion, we collect a dataset of non-watertight meshes by running
inverse rendering on multiview datasets of 3D objects. We term our final diffusion model on the
G-SHELL representation as G-MeshDiffusion. More details can be found in Appendix C.

6 EXPERIMENTS AND RESULTS

6.1 RECONSTRUCTION FROM MULTIVIEW IMAGES

Baselines. We compare our method to current state-of-the-art methods for non-watertight mesh
reconstruction: NeuralUDF [38], NeUDF [35] and NeAT [40]. We also evaluate watertight recon-
struction methods including NeuS [60] and Nvdiffrecmc [17] (with DMTet [55]). We follow the
original settings of these baselines, but train them for 400,000 iterations with mask loss weighted
by 0.1. During testing, the novel views are rendered and subsequently evaluated at a resolution of
512. For UDF-based methods, the non-watertight explicit meshes are extracted using MeshUDF [15],
while for SDF-based methods (NeuS/NeAT), the meshes are extracted with Marching Cubes [39]
with the same resolution. For Nvdiffrecmc with DMTet, we use a grid resolution of 128.

Dataset. We use DeepFashion3D-v2 [18] to quantitatively evaluate the performance of reconstruction
with G-SHELL on non-watertight meshes. Specifically, we use ground truth meshes of 9 instances
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Nvdiffrecmc
w/ DMTet

Ground Truth NeuS NeuralUDF NeUDF Nvdiffrecmc
w/ G-ShellNeAT

Figure 5: Comparison between reconstruction w/ G-SHELL and other baseline methods on multiview recon-
struction on DeepFashion3D dataset. Top row: reconstructed texture. Bottom 3 rows: reconstructed meshes.

Method \ Instance ID 30 92 117 133 164 320 448 522 591 Avg

NeuS [60] 31.876 26.850 29.234 29.692 30.405 33.827 31.591 32.846 26.282 30.289

Nvdiffrecmc w/ DMTet [55] 32.570 33.542 28.143 30.814 28.781 32.336 33.917 32.144 32.872 31.677

NeuralUDF [38] 30.264 25.887 28.908 31.115 28.463 30.739 32.185 29.965 32.574 30.011

NeUDF [35] 30.312 31.957 27.448 30.275 28.324 32.568 32.511 31.371 34.898 31.074

NeAT [40] 27.407 28.228 24.129 26.944 24.887 29.630 30.846 27.149 29.841 27.674

Nvdiffrecmc w/ G-SHELL 33.165 33.959 30.204 33.164 31.139 33.429 34.997 32.724 34.579 33.039

Nvdiffrecmc w/ G-SHELL (FC) 33.169 34.615 30.223 33.368 31.735 33.611 34.897 32.499 35.427 33.277

Table 1: PSNR (↑) on DeepFashion3D garment instances. Marker: 1st rank and 2nd rank.

from DeepFashion3D-v2 that overlap with the instances of DeepFashion3D-v1 used in [35, 38].
Different from previous work, such as NeuralUDF, that uses albedo images for training and testing,
we instead use images rendered with realistic lighting and shading. Specifically, for each instance we
use Blender with Cycles engine and realistic environment lightmap to render 72 views (RGB images
and binary segmentation masks) for training and 200 views for testing.

Settings. For the multi-view reconstruction with G-SHELL, we set the grid resolution to 128 for
tetrahedral grids and 80 for FlexiCubes, and train the models with 5000 iterations using a batch size of
2 views. For all baseline methods, we use the default settings as in their papers. Our experiments are
carried out with tetrahedral grid implementation of G-SHELL by default, if not otherwise specified.
To demonstrate that the idea of G-SHELL can be quite general, we also evaluate a simple variant of
G-SHELL implemented with FlexiCubes [56], denoted by G-SHELL (FC) in Table 1 and Table 2.

G-Shell w/ Tetrahedral grid G-Shell w/ FlexiCubes

Figure 6: Reconstructed mesh topology of G-SHELL
with tetrahedral grids and G-SHELL with Flexicubes.
Mesh vertex count: Left = 10,658, Right = 6,183.

Reconstruction quality. Table 1 shows the PSNR
averaged over all test views. For all shapes fitted
with implicit-based baseline methods (i.e., except
for Nvdiffrecmc with DMTet), we render images
directly from the learned implicit fields instead of
the extracted meshes. We also evaluate all meth-
ods on the quality of the reconstructed geometry by
computing the bi-directional pointcloud-to-mesh
Chamfer distance. The results are given in Table 2,
from which we see that G-SHELL achieves ex-
cellent reconstruction quality and outperforms a
number of state-of-the-art methods. Figure 5 gives
a qualitative comparison, where the front and back mesh faces (re-oriented to be consistent to their
neighbors) are painted in different colors. The qualitative results in Figure 6 demonstrates that the
mesh topology reconstructed by G-SHELL with FlexiCubes is more regular than G-SHELL with
tetrahedral grids, making it better suited for physical simulation. More results are in Appendix F.
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Method \ Instance ID 30 92 117 133 164 320 448 522 591 Avg

NeuS [60] 0.450 1.244 0.505 0.709 0.528 0.426 0.734 0.598 1.737 0.770

Nvdiffrecmc w/ DMTet [55] 0.629 0.466 0.724 0.856 0.722 0.444 0.444 0.649 1.026 0.662

NeuralUDF [38] 0.457 0.867 0.281 0.215 0.198 0.554 0.197 0.561 0.206 0.393

NeUDF [35] 0.315 0.458 0.204 0.107 0.184 0.432 0.159 0.585 0.128 0.286

NeAT [40] 0.605 0.325 1.010 0.873 0.538 0.305 0.323 0.591 0.237 0.534

Nvdiffrecmc w/ G-SHELL 0.212 0.207 0.133 0.144 0.160 0.173 0.173 0.208 0.178 0.177
Nvdiffrecmc w/ G-SHELL (FC) 0.235 0.227 0.146 0.154 0.165 0.229 0.195 0.261 0.234 0.203

Table 2: Chamfer distance (cm ↓) on DeepFashion3D garment instances. Marker: 1st rank and 2nd rank.

Method \ Metalness 0 0.2 0.4 0.6 0.8 1 Avg

NeuS [60] 33.59 32.03 31.62 31.21 30.58 30.45 31.58

NeuralUDF [38] 31.42 29.54 29.45 29.39 29.25 28.98 29.67

NeUDF [35] 32.45 29.32 29.04 29.19 29.13 29.18 29.72

NeAT [40] 28.41 27.37 28.07 26.93 26.58 26.85 27.37

G-SHELL 36.01 34.23 32.86 33.08 32.93 32.31 33.57

Method \ Metalness 0 0.2 0.4 0.6 0.8 1 Avg

NeuS [60] 0.47 0.59 0.50 0.57 0.68 0.72 0.59

NeuralUDF [38] 0.51 1.06 1.05 0.98 0.53 0.85 0.83

NeUDF [35] 0.26 0.52 0.40 0.45 0.70 0.44 0.46

NeAT [40] 0.59 0.65 0.61 0.68 0.70 0.73 0.66

G-SHELL 0.20 0.22 0.28 0.24 0.24 0.27 0.24

Table 3: Ablation study on metallic materials. We use Nvdiffrecmc along with the proposed G-SHELL for our
reconstruction in the experiment. Left: PSNR (↑). Right: Chamfer distance (cm ↓).

From Figure 5, we can observe that our method achieves much better prediction on novel views than
the other baselines due to the better modeling of lighting, occlusion and material. Due to the highly
concave structure in the clothing interior, we can also see that watertight reconstruction baselines
often fail to reconstruct the inner side of clothing in the DeepFashion3D dataset.

Efficiency in training and inference. In addition, we compare the runtime of all non-watertight
methods (tested on the same machine with a single NVIDIA RTX 6000 GPU). Along with Nvd-
iffrecmc, G-SHELL takes only 3 hours to fit a ground truth shape while NeuralUDF, NeUDF and
NeAT take 17.3, 16.4, and 4.3 hours, respectively. For novel-view synthesis with all images rendered
with a resolution of 512×512, our method runs at 2.7 sec/img (inferring from a learned tetrahedral
grid with the Nvdiffrast rasterizer [27]), while NeuralUDF, NeUDF and NeAT run at 1.8 min/img,
1.4 min/img, and 9.7 min/img, respectively. Compared to the other methods, ours is significantly
faster in both training and inference due to its highly efficient rasterization.

6.2 HYBRID WATERTIGHT AND NON-WATERTIGHT MESH RECONSTRUCTION

Figure 7: Left: the reconstructed mesh, with
back faces painted orange. Right: general-
ized winding number field; points near the
mesh boundary are colored white.

To demonstrate that G-SHELL may be used for recon-
structing both watertight and non-watertight shapes at the
same time, we test our method on an instance from the
synthetic NeRF dataset [41] in which all the images are
taken from the objects above and never below. We adopt a
minimalist assumption that unseen regions should always
be empty and reconstruct the target shapes with G-SHELL.
On the left of Figure 7, we show that the upper surface
of the target shape is well reconstructed without adding
any unnecessary lower surface faces. On the right hand
side of Figure 7, we also visualize the generalized winding
number field [2, 21] by randomly sampling points near the
surface to quantify local manifoldness. It shows that in-
verse rendering with G-SHELL can reconstruct a hybrid shape of both watertight and non-watertight
parts where the regions with only visible upper surface are reconstructed as single-layered meshes.

6.3 RECONSTRUCTION UNDER SPECULAR LIGHTING

One key advantage of mesh inverse rendering is that geometries may be reconstructed in cases of
complex lighting and materials. To demonstrate such an advantage, we conduct ablation experiments
and compare the performance of non-watertight mesh reconstruction methods on shapes with specular
surfaces. Specifically, we modify the material of the sweater mesh presented in Figure 5 by setting the
roughness parameter to 0.4 and create a set of meshes with the metalness parameter ranging from 0 to
1. We use the same set of hyperparameters for the experiment. Results in Table 1 and Table 3 verify
that G-SHELL can well reconstruct both images and shapes under complex lighting and materials.
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Figure 8: Samples of unconditionally generated upper and lower outfits by G-MeshDiffusion.

Method
MMD (10−3, ↓) COV (%, ↑) 1-NNA (%, ↓)

MV-FID (↓)
CD EMD CD EMD CD EMD

Lower

Garments

MeshDiffusion [36] 1.88 68.72 38.01 31.79 88.99 91.03 191.09

GET3D [12] 1.57 57.19 46.00 48.13 79.66 72.82 95.69

G-MeshDiffusion 1.36 55.30 41.92 41.03 68.29 67.23 79.01

Upper

Garments

MeshDiffusion [36] 1.24 55.37 51.51 46.71 77.44 78.77 167.69

GET3D [12] 1.37 56.86 48.85 43.87 84.37 80.11 112.45

G-MeshDiffusion 1.05 51.15 51.33 49.20 61.37 60.66 88.98

Table 4: Quantitative results of the proposed G-SHELL diffusion model (G-MeshDiffusion).

6.4 GENERATIVE 3D MESH MODELING

Baselines. As there are no mesh generative models for open surfaces with manifold structures, we
compare our method with two watertight mesh generative models: MeshDiffusion [36] and GET3D
[12], both using the SDF-based DMTet [55] as the representation. Detailed training settings are
deferred to Appendix C. We implement G-SHELL with tetrahedral grids in this experiment.

Dataset. We collect meshes in 4 categories (T-shirt, Top, Skirts, Trousers) from the Cloth3D dataset
[4] and regroup them into two new categories: upper garments (including T-shirt and Top) and lower
garments (including Skirts and Trousers). For both MeshDiffusion (using the DMTet representation)
G-MeshDiffusion (using the G-SHELL representation), we run inverse rendering on meshes with
known environment lightmaps and known materials using RGB, binary mask, and depth supervision.
We generally follow the same settings of [36] for G-MeshDiffusion. For GET3D, we follow the same
training setting as [12] and render multiview RGB images for training.

Evaluation metrics. For each model, we sample a set of meshes, with the size of the test sets, using
100 steps of DDIM [57] and apply standard Laplacian smoothing to these meshes. Similar to [12, 36],
we evaluate point cloud metrics between the point clouds sampled from generated meshes and those
from ground truth meshes. To compensate the lack of perceptual measure in the point cloud metrics,
we also evaluate the generated results with multiview FID (MV-FID) [36, 69], which is computed by
an average of FID (Fréchet Inception Distance) scores of 20 views (rendered with fixed light sources

9
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Figure 9: Interpolation results of our generated samples.
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Figure 10: Nearest neighbor of our generated sample in the training set.

and a diffuse-only mesh material). During rendering, we do not re-orient the face normals towards
the camera so that the difference between watertight and open surfaces can be taken into account.

Qualitative and quantitative results. The quantitative results are given in Table 4. We observe
that G-MeshDiffusion generally achieves better performance than the watertight mesh generation
methods (MeshDiffusion and GET3D), but more importantly, G-MeshDiffusion can better capture
the single-sided nature of non-watertight meshes as it achieves a significantly better MV-FID score.
In addition, we qualitatively show some unconditionally sampled meshes from G-MeshDiffusion
in Figure 8. Following [36], we also provide some interpolation sequences (obtained by spherical
linear interpolation with the initial Gaussian noises using 100-step DDIM inference) in Figure 9. The
interpolation results demonstrate a smooth transition across different clothing styles. Finally, we
show in Figure 10 the nearest neighbor of our generated meshes in the training set. The results show
that G-MeshDiffusion does not memorize the training samples and can generate novel shapes.

7 DISCUSSION ON LIMITATIONS

Representation. G-SHELL is not able to model shapes with self-intersections. Nor does it model
non-orientable surfaces such as Möbius strips, since the use of SDF implies orientability. Besides,
compared to implicit-based methods of which the resolution can be viewed as “infinite”, G-SHELL
generally may require a higher resolution in order to model tiny topological holes.

Mesh reconstruction. The discontinuity in mesh rendering poses a severe optimization problem when
the target geometry is complex, since the entanglement between geometry and indirect illumination
comes into play. In this paper, we only take shadow rays into consideration, but in more complex
scenarios one might need to model indirect illumination.

Mesh generation. 3D U-Nets are not memory-efficient, and it is hard to scale them to high resolutions.
Future work for better generative modeling with G-SHELL may include more efficient architectures
such as those using triplane features [6], and alternative 3D generative methods similar to GET3D [12].

8 CONCLUDING REMARKS

Our proposed G-SHELL is a general 3D mesh representation which models both watertight and
non-watertight meshes. By introducing the new quantity of manifold signed distance field (mSDF)
on a learnable watertight mesh template with varying topology, we enable both rasterization-based
reconstruction and diffusion-model-based unconditional generation of non-watertight meshes. Such a
design leads to better performance and greater flexibility in non-watertight mesh modeling. Still, G-
SHELL is only able to parameterize a limited subset of meshes, especially when limited computational
resources are available. Furthermore, it calls for better inverse rendering and generative modeling
techniques to fully leverage the flexibility of G-SHELL.
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A SOME MATHEMATICS ON SURFACES

We first state the condition for homeomorphism between compact triangulable bordered surfaces5:

Theorem 1 ([50]) Two compact triangulable bordered surfaces are homeomorphic if and only if they
both have the same number of boundary curves, the same Euler characteristic, and are either both
orientable or else both non-orientable.

It is apparent that any simply-connected surface is homeomorphic to a compact disk on a sphere,
since simply-connected bordered surfaces are triangulable.

Indeed, one may establish a more general relation between compact bordered surfaces and closed
surfaces with the following classification theorem:

Theorem 2 (Classification Theorem of Surfaces [29]) Every compact surface (without boundary)
is homeomorphic to one of the following:

• The sphere S.

• A connected sum of tori: T#...#T.

• A connected sum of projective planes: P2#...#P2

Together with Theorem 1, one may conclude that any connected orientable bordered surface (which
is triangulable) is homeomorphic to a compact bordered surface on either a sphere or a connected
sum of tori.

We conclude this section by noting the following theorem:

Theorem 3 ([1]) Every bordered surface F can be regularly embedded in a surface. If F is compact,
it can be regularly embedded in a closed surface.

5i.e., 2-manifolds, as opposed to the casual daily-life definition of surfaces.
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B DETAILED SETTINGS ON MESH RECONSTRUCTION

B.1 LOSSES

RGB and mask supervision. Given multiview RGB images IGT and the corresponding binary masks
MGT (to segment foreground from background), we optimize the following losses:

LRGB = ∥IRGB, Rendered ⊙MGT − IRGB, GT ⊙MGT∥22 , (3)

Lmask = ∥MRendered −MGT∥22 . (4)

Since the direct output of the renderer is a high-dynamic range (HDR) image ÎRGB, Rendered, we follow
[17] and use the same tonemapper Γ to map the HDR image into a sRGB image with pixels in the
range [0, 255]:

IRGB, Rendered = T (ÎRGB, Rendered) = Γ(log(ÎRGB, Rendered + 1)), (5)

where Γ is the sRGB transfer function [17].

mSDF supervision. Since all pixels with MGT = 0 should have a non-positive projected mSDF
value we introduce the following loss on mSDF values:

LmSDF = ∥(Mν −MGT)+ ⊙ sgn(1−MGT)∥1 , (6)

in which Mν is the rendered (i.e., projected) mSDF image.

Depth supervision. In cases when ground truth depth images are provided, we include a depth
supervision loss:

LDepth = ∥IDepth, rendered − IDepth, GT∥1 . (7)

Eikonal regularization. To reconstruct smoother surfaces, we use the standard Eikonal regularization
[14] for MLP-parameterized SDF values on the vertices of the reconstructed mesh:

LEikonal = E
v∈V

(∥∇fθ(v)∥2 − 1)2 (8)

in which V is the set of vertices of the extracted mesh.

mSDF regularization. We rewrite the mSDF regularization, introduced in the main paper, into the
following (with ϵ = 0.001):

LmSDF-reg-open(θmSDF) =
∑

u:νθ(u)≥0

Lhuber(νθ(u)), (9)

LmSDF-reg-close(θmSDF) =
∑

u′:νθ(u
′)=0

u′ visible from some q ∈ Q

Lhuber(νθ(u
′)− ϵ). (10)

To determine if a mesh vertex u′ is visible for the set of all training camera poses is computationally
costly. Therefore, we instead use an approximated loss for LmSDF-reg-close:

LmSDF-reg-close(θmSDF) =
∑

u′:νθ(u
′)=0

u′ visible from some q ∈ Qt

Lhuber(νθ(u
′)− ϵ). (11)

in which Qt is the batch of camera poses at training iteration t.

Note that we stop the gradient flow from these two losses to both SDF and grid node offsets. While it
is possible to allow gradients from mSDF regularization to update SDF and grid node offsets as well,
we choose not to do so to stabilize the optimization process.
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We follow [17] and use the following regularization losses:

Albedo smoothness regularization. To effectively decouple light from material, smoothness regular-
ization is imposed on albedo kd:

Lkd
=

1

xsurf

∑
xsurf

|kd(xsurf)− kd(xsurf + ϵkd
)|, (12)

in which ϵkd
∼ N

(
0, σ2

kd

)
(we use σkd

= 0.01).

SDF regularization. The following SDF regularization is to reduce floaters and inner geometry:

LSDF-reg =
∑
i,j∈S

H(σ(si), sgn(sj)) +H(σ(sj), sgn(si)) (13)

where S is the set of unique edges on the 3D grid, H is the binary cross-entropy loss, si, sj are the
SDF values of the corresponding grid vertices and sgn is the sign function. This regularization loss
aims to smooth the SDF in the whole space; as a result, isolated tiny meshes are less likely. This
regularization term is complimentary to the Eikonal loss, as Eikonal loss is mostly concerned with
the surface smoothness as it is computed on the surface only.

Monochrome regularization. The following loss6 helps decoupling lighting, geometry and material:
Llight = ∥T (Y (cd + cs)))− T (V (Iref))∥1 (14)

where cd and cs are the diffuse and specular light components, Iref is the target reference image, T is
the tonemapping function introduced earlier, Y (x) is the simple luminance operator by averaging
RGB channels (xr + xg + xb)/3, and V = max(xr, xg, xb). With this loss term, the demodulated
lighting is assumed to be mostly monochrome, i.e., Y (x) ≈ V (x).

In addition, we penalize the specular component with the following loss:

Lspecular =
λspecular ∥Y (cs)∥1
min{∥Y (cd)∥1 , ϵ}

. (15)

Mesh topology regularization. Finally, for the G-SHELL variant with FlexiCubes, we follow [56]
and use the proposed mesh topology regularization Ldev which penalizes mean absolute deviation
between the primal and dual vertices in FlexiCubes. The precise loss and parameter definitions are
beyond the scope of the paper and we do not elaborate them here.

Total loss. In summary, the total loss is
LTotal = Lrendering + Lgeometry-reg + Lmaterial-light-reg (16)

with
Lrendering = LRGB + γMaskLMask + γDepthLDepth

+ γmSDFLmSDF, (17)

Lgeometry-reg = γEikonalLEikonal + γSDF-regLSDF-reg

+ γmSDF-reg-openLmSDF-reg-open + γmSDF-reg-closeLmSDF-reg-close

+ γdevLdev, (18)
and

Lmaterial-light-reg = γlightLlight + γspecularLspecular + γkd
Lkd

. (19)

Choice of loss scales. For DeepFashion3D instances, we set γMask = 1, γmSDF = 0.5, γmSDF-reg-close =
10−6/ρ, γmSDF-reg-open = 3 × 10−6/ρ, γlight = 0.15 and γspecular = 0.0025, where ρ =
(grid-resolution/64)3. We use a linear schedule for Eikonal regularization: γEikonal = 0.3 for the
first 500 iterations, γEikonal = 0.1 for iteration 500 to 2000 and γEikonal = 0.01 for the remaining
iterations.

For the synthetic chair experiment, we set γEikonal = 5e − 3, γmSDF-reg-close = 2e − 4/ρ. We set
γmSDF-reg-open to 2e− 5/ρ for the first 1500 iterations and 2e− 6/ρ for the remaining ones.

We set γdev = 0.25 for the G-SHELL variant with FlexiCubes but otherwise 0. All other loss scales
not mentioned are set to default values as in [17].

6There are slight differences between the Nvdiffrecmc paper, the official repository of Nvdiffrecmc and our
implementation. Please see Sec. B.2 for more details.
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B.2 DIFFERENCES IN IMPLEMENTATIONS FOR LIGHTING REGULARIZATION

We note the difference between the Nvdiffrecmc paper [17] and the official implementation7. In
the original paper, the lighting regularization is written such that T is the first to be applied to the
rendered and reference image:

∥Y (T (cd + cs)))− V (T (Iref))∥1 . (20)

The official implementation uses a modified regularization loss, in which the first term tends to
encourage specular components (ϵ = 0.001 in the repo):

λdiffuse
∥Y (cd)∥1

min{∥Y (cd + cs)∥1 , ϵ}
∥T (Y (cd + cs))− Iref∥1 +

λspecular ∥Y (cs)∥1
min{∥Y (cd)∥1 , ϵ}

. (21)

B.3 RENDERING, OPTIMIZATION AND OTHER SETTINGS

For G-SHELL with tetrahedral grids, we set the number of rays samples of the Nvdiffrecmc renderer
(for Monte-Carlo approximation of the rendering equation) Nsample = 24 for better performance on
the interior of mehses (e.g., clothing in DeepFashion3D dataset). In practice, setting Nsample = 12
leads to faster convergence (approx. 2 hours) without too much sacrifice on reconstruction quality
(PSNR values lowered by less than 1). For G-SHELL with FlexiCubes, we instead use Nsample = 16.

As occlusion heavily depends on shape topology, it will be hard to optimize both lighting and shape
topology at the same time with some initialized shape. To alleviate this issue, we follow Nvdiffrecmc
[17] and use soft occlusion during the first few hundred iterations. Specifically, the occluded light
rays will be scaled by η, which gradually decreases from 1 at iteration 0 to 0 at iteration 1000. η is
fed to the denoiser in Nvdiffrecmc as well. Please refer to [17] for implementation details.

The learnable PBR materials are parameterized in the same way as in [17]. We do not learn a normal
map (and therefore the normal regularization in the Nvdiffrecmc paper does not apply here).

We use Adam optimizer with (β1, β2) = (0.9, 0.99). The total number of iterations for each shape is
5000. The initial learning rate of the MLP for parameterizing SDF values is set to 3e− 4 while those
for mSDF and grid node offsets are set to 0.15. The initial learning rate for the rest of parameters
used in G-SHELL with FlexiCubes are set to 3e− 4. The learning rates follow a decay schedule of
10−0.0002·t where t is the iteration number.

We use an MLP with 6 hidden layers and a hidden channel size of 128 (with a concatenation shortcut
from input to the output of the 4th layer) to parameterize SDFs. We use the standard positional
encoding (for instance in [41]): [1, cos(21x), sin(21x), cos(22x), sin(22x), ..., cos(2Kx), sin(2Kx)]
with K = 6. We use Softplus activation with β = 100 for all layers except for the final output layer
(in which no activation function is used). The MLP is initialized by fitting the SDF of a sphere with
the diameter being roughly half of the grid size.

The learnable grid node offsets, after multiplied by the scale of deformation, are directly added to the
canonical (i.e., undeformed) grid vertex positions. After each gradient update, we clip the learned
(and unscaled) grid node offsets to [−1, 1]. These learnable offsets are initialized to 0.

The images for the DeepFashion3D ground truth shapes are rendered using Cycles engine in Blender
with 5,000 samples, a number of max bounces of 24 and a fixed environment lightmap.

We sample 100,000 points per mesh to compute Chamfer distances. Here we use the implementation
in ECON [63] 8, which computes the bi-directional metric with pointcloud-to-surface distances.

7https://github.com/NVlabs/nvdiffrecmc
8https://github.com/YuliangXiu/ECON/blob/master/lib/dataset/Evaluator.py
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C DETAILED SETTINGS ON DIFFUSION MODELS WITH G-SHELL

C.1 GRID STORAGE OF INTERPOLATION COEFFICIENTS FROM MSDF

As described in the main paper, in each tetrahedral cell there are 12 candidate (watertight) mesh edges
if we count all possible SDF configurations. Since these 12 candidate edges are in general spatially
separated, we take the simplest approach and store them on a larger cubic grid.

Suppose (normalized) SDF values and grid node offsets are stored in a cubic grid of resolution R, the
same as in MeshDiffusion. Due to the spatial regularity of these 12 candidate edges (as long as we
use a regular enough tetrahedral grid), we design a positional embedding for each edge. Specifically,
the “location” of each candidate edge (ui, uj), of which ui lies on the tetrahedral grid edge (p1, p2)
and uj on (p2, p3), is

p1 + p3 + 2p2
4

(22)

where p’s are the undeformed grid vertices respectively. With these positional embeddings, we may
store them to the nearest coordinate in a larger cubic grid of resolution 2R. As a result, we are
able to use 3D U-Net for a diffusion model to jointly generate SDF values, deformation vectors and
mSDF-induced interpolation coefficients.

For each candidate edge (ui, uj), we may either generate αi or αj (note that αj = 1− αi). We pick
the simplest convention: we first sort two nodes (ui, uj) of each candidate edge in a lexicographical
order of the three dimensions of a and b, and then for each sorted edge (a, b), we always pick αa as
the interpolation coefficient to generate.

C.2 ARCHITECTURE AND TRAINING SETTINGS

We use the same architecture of MeshDiffusion but add two input layers (one for the mSDF values and
one for the mSDF grid mask which indicates where in the grid stores mSDF values; each implemented
with a 3D convolution layer of kernel size 3) and an output layer (implemented with a transposed 3D
convolution layer with kernel size 4, stride 2 and padding 1) to accommodate the introduction of an
additional grid for mSDF-induced interpolation coefficients. The output of the additional input layer
is directly added to the output of the original input layer in the MeshDiffusion U-Net architecture.
Similar to MeshDiffusion, the predicted mSDF noise is multiplied by the mSDF grid mask so that
only the used mSDF grid locations are counted.

We follow the training settings in MeshDiffusion with a reduced learning rate of 1e− 5. We use a
batch size of 8 with 4 gradient accumulation steps (with 8 80GB-mem A100 GPUs). We use mixed
precision training to speed up the training process.

C.3 DATA PREPARATION

We use the official GET3D implementation9 to prepare datasets of rendered images for ground truth
meshes (with a simple diffuse-only material). For MeshDiffusion (with DMTet), we mostly follow
[36] but fit each object with 1000 iterations for both coarse-fitting and finetuning stages (instead
of 5000) with the deformation scales set to 0 and 2.0, respectively. For G-MeshDiffusion, we use
the depth supervision loss with γdepth = 100 but disable the mSDF regularization losses as the
depth information is enough for identifying topological holes on ground truth shapes. As in the
reconstruction experiments, SDFs are parameterized by an MLP instead of being directly stored as
learnable scalars in the tetrahedral grid. We recenter the meshes to the origin (in the world coordinate),
and then rescale all meshes in an isotropic way so that the minimum and maximum of the bounding
box coordinates are −1 and 1, respectively. After rescaling, we compute the minimum and maximum
of x, y, z coordinates in each dataset (upper and lower garments) and scale the tetrahedral grid with
H =

(
0.45(xmax − xmin), 0.45(ymax − ymin), 0.45(zmax − zmin)

)
. The SDF values are initialized to

fit a ellipsoid obtained by scaling a unit sphere with H . The mSDF values stored on tetrahedral grids
are initialized in the same way as in reconstruction experiments: we randomly initialize them by
sampling from a uniform distribution U(−0.01, 0.99).

9https://github.com/nv-tlabs/GET3D
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D A BRIEF INTRODUCTION ON MESHDIFFUSION

MeshDiffusion [36] is a diffusion model [19] that generates a tetrahedral grid representation [55]
for watertight meshes. It assumes that every mesh in the dataset is parameterized by a deformable
tetrahedral grid (with fixed grid topology) which stores SDF values. By setting the canonical
tetrahedral grid as a uniform grid, one may measure the node offsets from the deformed position to
the canonical position. The deformable grid of SDF values (1 dimension) can therefore be turned
into a uniform grid of offsets and SDF values (in total 4 dimensions). As a uniform tetrahedral
grid can be seen as a subset of a cubic grid, a dataset of cubic grids can be created by introducing
some artificial sites to augment the tetrahedral grid. By using cubic grids, standard 3D U-Nets (with
standard 3D convolution layers) can be used for the diffusion model, and MeshDiffusion is trained on
and produces such augmented grids.

While directly producing a 4-dimensional vector of node offsets and SDF values is feasible, often
it produces many artifacts in generated meshes. The reason is mostly due to that the mesh vertex
positions are computed in a non-linear way:

u12 =
u1s2 − u2s1

s2 − s1
=

|s2|u1 + |s1|u2

|s1|+ |s2|
(23)

with u1, u2 be two nodes of an edge on a tetrahedral grid and s1 > 0 > s2 the corresponding SDF
values. Notice that u′ stays the same if one scales both s1 and s2 by a same positive scalar. As the
SDF values are not directly computed from the ground truth shapes but instead optimized [36, 42, 55],
they cannot be uniquely determined. As a result, the scale of them can vary in different positions
and vary across the dataset, which makes the diffusion model harder to learn. To see why it could be
an issue, let’s suppose that there is a node in the tetrahedral grid which always has a negative SDF
value with tiny scale in the dataset, and its surrounding nodes have positive SDF values with large
scales. A small perturbation on the SDF values of the node with a tiny SDF scale may easily lead to a
topological change in the extracted mesh, while one on the neighboring nodes is much less likely to
change the mesh topology.

Here is another perspective to demonstrate the effect of the unconstrained scale: suppose the signs of
SDFs are known (therefore, known mesh topology) and the tetrahedral grid is not deformable. The
model now only needs to learn the scale of SDF values. Let’s further assume a small and identical
noise ϵ′ > 0 on all SDF values. We have

u12,noisy − u12 =
ϵ′

|s1|+ |s2|
(u2 − u1) (24)

If one trains a DDPM model [19] on the extracted mesh vertex positions instead (as the mesh topology
is assumed to be known and fixed), the loss becomes

E
t∈[0,T ],ϵ∼N (0,I),U∈D

wt ∥ϵ− fθ(αtU + σtϵ, t)∥2 (25)

where D is the dataset of meshes, U is the vector of all mesh vertex positions and wt is a weighting
coefficient and fθ is the denoising U-Net. With the mesh extraction formula with noisy SDF values,
one may see that the standard Gaussian noise in mesh vertex positions in each local region is roughly
the standard Gaussian noise in SDF values multiplied by the inverse of the average local SDF scale.
Uneven SDF scales in the dataset lead to a unevenly weighted loss (in the sense of mesh vertex
positions) on different data points and on different mesh vertex positions.

To alleviate this issue, MeshDiffusion employs a SDF normalization strategy which rounds SDF
values in the dataset to ±1, depending on the sign of SDF values. Such an operation leads to additional
errors, and therefore in the data collection process one needs to finetune the optimized grid node
offsets after the normalization step. As the model is trained on normalized datasets, SDF values of
the generated grids need to be normalized as well. Here we note that a similar phenomenon has been
observed in [66] in which learning diffusion models to generated NeRF grid fields from an arbitrary
NeRF dataset leads to artifacts and constraints on NeRF datasets have to be imposed for better quality.
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E IMPLEMENTATION OF G-SHELL

Algorithm 1 Mesh Extraction with G-SHELL

1: For any grid edge (p1, p2) with opposite SDF signs, compute mesh vertex positions by u =
(p1s2 − p2s1)/(s2 − s1).

2: Project all mSDF values stored on the 3D grid to the extracted mesh vertices. The resulted mSDF
value ν′ for any u extracted from (p1, p2) is ν′ = (ν1s2 − ν2s1)/(s2 − s1).

3: With the mSDF on watertight mesh vertices and SDF signs on grid nodes known, check the
look-up table and determine the non-watertight mesh topology for each single cell. Compute
the position of any boundary vertex with o = (νbua − νaub)/(νb − νa) for any watertight mesh
edge (ua, ub) to be cut.
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F MORE QUALITATIVE EXAMPLES OF MULTI-VIEW MESH RECONSTRUCTION

Nvdiffrecmc
w/ DMTet

Ground Truth NeuS NeuralUDF NeUDF Nvdiffrecmc
w/ G-ShellNeAT
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Figure 11: Comparison between reconstruction w/ G-SHELL and baseline methods on instance 92 in DeepFash-
ion3D dataset.
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Figure 12: Comparison between reconstruction w/ G-SHELL and baseline methods on multiview reconstruction
on instance 117 in DeepFashion3D dataset.
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Figure 13: Comparison between reconstruction w/ G-SHELL and baseline methods on multiview reconstruction
on instance 320 in DeepFashion3D dataset.
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Figure 14: Comparison between reconstruction w/ G-SHELL and baseline methods on multiview reconstruction
on instance 522 in DeepFashion3D dataset.
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G RECONSTRUCTED MESHES FOR SURFACES WITH COMPLEX PATTERNS

We also show the reconstruction result of a non-watertight surface with complex surface patterns in
Figure 15. The results show that G-SHELL can almost perfectly reconstruct the geometry.

Ground truth multi-view images

Reconstruted non-watertight mesh

Figure 15: Reconstruction results of a non-watertight surface with complex surface patterns from multi-view
imgaes.
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H RECONSTRUCTION OF SHAPES WITH METALLIC MATERIALS

We visualize the ground truth and reconstructed shape in the specular lighting setting. With the
increase of metalness in the material, the reconstructed shapes start to contain artifacts. Yet the
reconstructed 3D meshes still replicate most of the target geometry and texture. The missing specular
lighting effect in the rendered image is mostly due to the limitation of the renderer – no indirect
illumination is considered. More advanced differentiable rendering methods may solve this issue.

m=0 m=0.2 m=0.4 m=0.6 m=0.8 m=1

Ground Truth

Reconstrution

Figure 16: Qualitative results of the ablation study on the change of specular parameter in the ground truth mesh
material. m represents metalness parameter.
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I ON MSDF REGULARIZATION

It might be tempting to ignore the second term the mSDF regularization loss with some well-tuned
set of loss coefficients. However, we empirically observe that it is hard to find a good choice
for γmSDF-reg-open to achieve conservative yet effective hole opening regularization. A too large
γmSDF-reg-open typically results in large topological holes when the shape to optimize is still far from
the target shape (and often leads to completely empty meshes); a too small value fails to create
topological holes when needed and fails to remove meshes in unobserved/occluded regions. It is
possible to find a schedule of γmSDF-reg-open without LmSDF-reg-close. However, we note that the schedule
of γmSDF-reg-open has to be synchronized with the schedule of shadow ray contribution: once the
occluded light rays hardly contribute in rendered colors, it is in general hard for the shape topology to
change dramatically. A time-invariant loss coefficient of LmSDF-reg-close is in general easier to control
and more robust.

On the other hand, a too small scale for LmSDF-reg-close often leads to incorrect shape topology while
a too large scale for LmSDF-reg-close may produce some artifacts. These losses are correlated with
different initialization strategies and influence the optimization process in a coupled way.

In Fig. 17, we show some extreme cases when inappropriate mSDF regularization scale leads to
failures. We do not include the case for very large scales of LmSDF-reg-open as nearly no meshes will be
produced.

(a) Small mSDF hole-closing loss (b) Large mSDF hole-closing loss (c) Tiny/zero mSDF hole-opening loss

Figure 17: Extreme cases with inappropriate mSDF regularization scales.
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J EXPERIMENT ON REAL DATA

To demonstrate that our method works on real data, we collected a set of multiview images by shooting
a video with a hand-held smartphone. We extract 94 frames out of the video and obtain camera poses
via COLMAP [51, 52]. The binary segmentation masks are obtained by running an off-the-shelf
foreground segmentation model [47] on all the images. We fit the G-SHELL representation with
the same set of parameters as in the chair example and show the results in Figure 18. Even the
images include inconsistent lighting (due to the occlusion by the video shooter), motion blur and
some specular lighting from the piece of the paper, Nvdiffrecmc inverse rendering with G-SHELL is
still able to reconstruct a relatively reasonable shape with texture.

Input image Input mask Reconstructed image Reconstructed mesh

Figure 18: Empirical results on the real data collected by a hand-held smartphone.
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K VISUALIZATION OF LEARNED WATERTIGHT MESH TEMPLATES

We show the resulted watertight mesh templates for some of the DeepFashion3D instances. We note
that in theory these watertight mesh templates can be arbitrary, though the inductive bias of MLP and
the Eikonal loss largely regularize the watertight template to be smooth enough.

Figure 19: Visualization of the watertight mesh templates for each instance in DeepFashion3D dataset at the end
of optimization.
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